Universality of Fully-Connected Recurrent Neural Networks
نویسنده
چکیده
It is shown from the universality of multi-layer neural networks that any discretetime or continuous-time dynamical system can be approximated by discrete-time or continuous-time recurrent neural networks, respectively.
منابع مشابه
Fault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier
Microgrids have played an important role in distribution networks during recent years. DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...
متن کاملConnection Reduction of the Recurrent Networks
There are many variations on the topology of recurrent networks. Models with fully-connected recurrent weights may not be superior to those models with sparsely connected recurrent weights in terms of capacity, time for training and generalization ability. In this paper, we show that the fully-connected recurrent networks can be reduced to functionally equivalent partially-connected recurrent n...
متن کاملEstimation of Network Reliability for a Fully Connected Network with Unreliable Nodes and Unreliable Edges using Neuro Optimization
In this paper it is tried to estimate the reliability of a fully connected network of some unreliable nodes and unreliable connections (edges) between them. The proliferation of electronic messaging has been witnessed during the last few years. The acute problem of node failure and connection failure is frequently encountered in communication through various types of networks. We know that a ne...
متن کاملPhoneme Probability Estimation with Dynamic Sparsely Connected Artificial Neural Networks
This paper presents new methods for training large neural networks for phoneme probability estimation. An architecture combining time-delay windows and recurrent connections is used to capture the important dynamic information of the speech signal. Because the number of connections in a fully connected recurrent network grows super-linear with the number of hidden units, schemes for sparse conn...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993